
© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIRAB06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 365

A Parallel Approach to ModifiedRPset

R.Prabamanieswari, Research Scholar 1, D.S.Mahendran, 2Principal,T.C. Raja

Kumar3, 3Associate Professor

 Research Scholar 1 (Reg No. 11991), Manonmaniam Sundaranar University,

Abishekapatti, Tirunelveli -12, prabacs_2006@yahoo.com

 (Resarch Center: St. Xavier’s College, Palayamkottai)

2Principal, Aditanar College of Arts & Science, Tiruchendur,

India,dsmahe65@yahoo.com

3Associate Professor, Department of Computer Science, St. Xavier’s College,

Palayamkottai,

India,grajazion@gmail.com

ABSTRACT

 Recently, most of the applications will not need precise support information for

frequent pattern. They approximate the frequency of every frequent pattern with a

guaranteed maximal error bound. But, these algorithms generally have some

problems and challenges while processing large-scale data. Therefore, the parallel

approach has emerged as an important research topic. This paper implements the

algorithm ModifiedRPset in a parallel manner while creating NCFP-tree. It follows the

concepts such as considering closed patterns, finding C(X)s for closed patterns and

applying greedy set cover algorithm which are same as in the previous algorithms

MinRPset and ModifiedRPset. The experiment results show that the proposed

algorithm gives better execution time for finding a small number of representative

patterns to best approximate all other frequent patterns comparing to the algorithm

ModifiedRPset.

Keywords: Frequent itemset, threaded NCFP-tree, greedy method,

representative pattern sets.

1.INTRODUCTION

Efficient algorithms for mining frequent itemsets are crucial for mining association

rules as well as for many other data mining tasks. Different methods introduced by

different researchers generated the frequent itemsets by using the candidate

generation [2] as well as without candidate generation [3]. Many algorithms and

techniques based on tree [3] are posed for enumerating itemsets from transactional

databases. Let the transactional database D= {t1, t2, . . . , tn}, where tj is a transaction

containing a set of items, j[1,n]. Let I = I1,I2…..,Im be a set of m distinct attributes

and t be transaction that contains a set of items such that T I. Each subset of I is

called an itemset. If an itemset contains k items, then the itemset is called a k-

itemset. The support of itemset X in database D is defined as the percentage of

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIRAB06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 366

transactions in D containing X, that is, support tD (X) = {t | tD and X  t}/D. If the

support of a pattern X is larger than a user specified threshold min-sup (min-sup (0,

1]), then X is called a frequent pattern. Given a transaction database D and a

minimum support threshold min-sup, the task of frequent pattern mining is to find all

the frequent patterns in D with respect to min-sup.

Nowadays, most of the applications will not need precise support information for

frequent pattern. They approximate the frequency of every frequent pattern with a

guaranteed maximal error bound. Recently, several approaches have been

proposed to tackle the concise representation of frequent itemsets such as top-k

frequent patterns [6], top-k redundancy-aware patterns [8], and error-tolerant

patterns [5]. When considering the availability of massive volume of data, analyzing

and decision making is still a major issue. To address this issue, it is necessary to

study parallel implementations of data mining algorithms. In order to create parallel

algorithms it is important to have an efficient way to tell the operating system to

create either threads or processes. Many parallel problems are solved through the

decomposition of data by creating threads to work on the data in parallel. In this

paper, we propose a parallel formulation of the NCFP-Tree algorithm using multiple

threads.

The rest of the paper is organized as follows: Section 2 presents the related work.

Section 3 describes the parallel construction of NCFP-tree and generation of

representative pattern sets with example. The experimental results are shown in

section 4. Finally, section 5 concludes the paper.

2. RELATED WORK

In many applications, knowing the approximate support of frequent patterns is

sufficient. Several approaches are proposed to make a trade-off between pattern set

size and the precision of pattern support. Xin et al. [7] proposed two algorithms,

RPglobal and RPlocal. The algorithm RPglobal is very time-consuming and space-

consuming. RPlocal is very efficient, but it produces more representative patterns

than RPglobal. G.Liu et al [11] analysed the bottlenecks of RPglobal and RPlocal

and developed two algorithms, MinRPset and FlexRPset, to solve the problem. The

algorithm MinRPset is similar to RPglobal, but it utilizes several techniques to reduce

running time and memory usage. In particular, MinRPset uses a tree structure called

CFP-tree [9] to store frequent patterns compactly. The algorithm FlexRPset provides

one extra parameter K, which allows users to make a trade-off between efficiency

and the number of representative patterns selected. In [13], the algorithm NCFPGEN

for creating a NCFP-tree is proposed. The algorithm ModifiedRPset which is

proposed in [15] uses NCFP-tree instead of CFP-tree and MinRPset to generate

minimum representative pattern sets. Although CFP-tree and NCFP-tree algorithms

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIRAB06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 367

are very efficient, they still take a lot of time to find minimum representative pattern

sets. To reduce the execution time, it is necessary to study parallel implementation

of such algorithms.

There are many parallel association rule mining algorithms within the literature.

Most such parallel algorithms are Apriori based. A parallel tree projection based

algorithm, called MLFPT, based on FP-Tree algorithm is presented in [4] for a

shared memory environment. In [10] a massively parallel FP-Growth algorithm is

presented, the proposed algorithm allows to eliminate virtually communication

among computers. The algorithm is expressed with the MapReduce framework.

Arpan H. Shah et al., proposed Optimum pattern Tree [12] on incremental database

with same threshold value. This algorithm is implemented on Hadoop to reduce the

computation cost. Swathika.K and Helen W.R proposed a data partition [14] based

Frequent Itemset Mining model over Hadoop that could be used to classify the type

of tumour based on the prediction. In this paper, the proposed work creates parallel

construction of sub trees of NCFP-tree [13] for each frequent 1-item in the header

table.

3. PARALLEL REPRESENTATIVE PATTERN SETS MINING

Our proposed parallel representative Pattern Sets mining algorithm ParallelRPset

consists of parallel construction of NCFP-tree using a thread concept and mining of

the tree structure NCFP-tree for generating representative Pattern Sets. A detailed

description of each major step is described in subsequent sections.

3.1 Parallel NCFP-tree Construction

The parallel pre-processing is performed in order to construct the final data structure

that is going to be used for the mining. Given transactional database D and a

minimum support threshold, finding of all frequent items and removing infrequent

items in D are performed. Then, a conditional database Dand an extended

conditional database Dare constructed. We use a header table to maintain the set

of frequent items ui in a database. The frequent items are sorted into ascending

frequency order in the header table. The mining is performed on D to mine all the

itemsets starting with ui. Now, a thread concept is applied to process unique item ui

in the header table. This is accomplished by letting each thread to create its own

NCFP -tree, from its own node corresponds to header table. The process in NCFP-

tree [13] such as creating single node and multiple nodes is done simultaneously by

using multiple threads. The sub trees are constructed in parallel manner instead of

processing each unique item ui separately for creating sub trees. Thus, the same

NCFP-tree is created in parallel manner.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIRAB06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 368

3.2 GENERATION OF REPRESENTATIVE PATTERN SETS

Now, we use NCFP-tree to generate C(X)—the set of frequent patterns that X covers

and to find minimum number of representative pattern sets. Here, we use

ModifiedRPset [15] MinRpset [11] and the algorithm greedy [1] to generate the

minimum number of representative pattern sets.

Algorithm: ParallelRPset

Input:

 D is the database

 min-supp is the minimum support threshold

Output:

 Minimum number of Representative Pattern Sets

Description:

1. Find frequent items, remove infrequent items and sort frequent items

2. Create conditional database D and extended conditional database D

3. Create a header for sorted frequent 1-itemsets (unique items ui)

4. For each unique item ui  header

 Create NCFP-tree sub tree using thread

5. Apply ModifiedRPset to find minimum number of Representative Pattern Sets

EXAMPLE

Consider the Transactional Database given in Table I. It has seven transactions, that

is |D|=7. Assume minsup= 40%. The set of frequent itemsets are determined and are

given in Table II. The construction of NCFP-tree in parallel manner is done by using

six threads such as Thread 1, Thread 2..... and Thread 6. It is represented in

programming aspect as:

Thread 1 Thread 2 Thread 3

c d p

c-->|-|m|-|a p-->|-|f

 p-->-->m

 p-->-->-->a

 p-->|-|f-->m

 p-->|-|f-->-->a

 p-->|-|f-->m-->|-|a

Thread 4 Thread 5 Thread 6

f m a

f-->m m-->|-|a

f-->-->|-|a

f-->m-->|-|a

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIRAB06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 369

The following figure shows the parallel construction of NCFP-tree.

 Fig. 3.1 Threaded NCFP-tree

The Threaded NCFP-tree is same as NCFP-tree [13]. Here, we no need to merge all

sub trees because all sub trees are constructed simultaneously. Table III shows the

compact representation of frequent itemsets which are stored in NCFP-tree.

Table I. Transaction Database Table II. Frequent Itemsets Table III. Compact Itemsets

The procedures such as finding C(X)s and determining representative pattern sets

are done either by using MinRPset [11] or by using ModifiedRPset [15]. Because

ModifiedRPset follows the same procedures for finding C(X)s and applying Greedy

method from MinRPset. The C(X) contains the subsets of X that can be-covered by

X, for every X ∈ Fˆ where Fˆ denotes frequent patterns with support ≥ min_sup *

(1−) and F denotes frequent patterns with support ≥ min_sup. The C(X) is

determined only for closed patterns. Therefore, for each itemset belongs to Table III

is first checked whether it is closed or not then C(X) is determined. This example

determines C(X)s only for the itemsets which are given in Table IV.

 Table IV. Closed Frequent Itemsets

Finally, the minimum representative pattern sets are discovered. In this example, the

minimum representative pattern sets are { {pfma:3}, {cma:3}, {d:3}}.

4. EXPERIMENTAL RESULTS

The experiment is carried out on the computer with the configuration such as Intel(R)

Core(TM) i3CPU, 3 GB RAM, 2.53 GHz Speed and Windows 7 Operating System.

Three approaches such as MinRPset, ModifiedRPset and ParallelRPset are

implemented in java. The experiment is evaluated on mushroom dataset. The

mushroom dataset contains the characteristics of various species of mushrooms. It

TID TRANSACTION

1 a, c, e, f, m, p

2 a, b, f, m, p

3 a, b, d, f, g

4 d, e, f, h, p

5 a, c, d, m, v

6 a, c, h, m, s

7 a, f, m, p, u

Frequent Itemsets(Compact Form) Frequent Itemsets(Compact Form)

 (min_sup = 40%)

cma:3

d:3

pfma:3 pf:4

fma:3 fa:4 f:5

ma:5

a:6

Closed Patterns (min-sup=40%)

f:5, a:6

pf:4, fa:4,ma:5

cma:3

pfma:3

Closed Patterns (min-sup=40%)

f:5, a:6

pf:4, fa:4,ma:5

cma:3

pfma:3

c:3

ma:3

d:3

p:4 f:5 m:5 a:6

f:4 m:3 a:4 a:5

ma:3 a:3

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIRAB06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 370

has 119 items and 8124 transactions. The minimum, maximum and average length

of its transaction is 23. It is obtained from the UCI repository of machine learning

databases.

4.1 EXECUTION TIME

Here, the experiment considers execution time for finding the performance of the

proposed algorithm ParallelRPset. The proposed algorithm is compared with

MinRPset and ModifiedRPset. The algorithms are tested on the mushroom dataset.

The figures Fig 4.1 and Fig 4.2 show the execution time of MinPRset,

ModifiedRPset and Parllel-RPset algorithms. Fig 4.1 shows the execution time when

considering sample data which is given in Table I. The min-supp is varied from 20%

to 100% in increments of 20% and  = 0.25. We observed that there is a small

difference between ModifiedRPset and MinRPset but, ParallelRPset has better

performance comparing to both approaches. Fig.4.2 shows the execution time when

considering mushroom dataset. Here,  is changed from 0.1 to 0.5 and min-supp is

fixed as 0.4. The ParallelRPset gives better performance than MinRPset and

Modified-RPset.

 Fig 4.1. Execution Time when =0.25 Fig 4.2. Execution Time when min-supp=0.4

5. CONCLUSION

In this paper, we constructed threaded NCFP-tree and applied it in the

ModifiedRPset instead of NCFP-tree to find minimum representative pattern sets.

The proposed algorithm is implemented in java programming language. It gives

better execution time comparing to both algorithms MinPRset and ModifiedRPset. In

the future, we intend to improve this algorithm based on our findings and run our

parallel algorithm for higher number of processors with larger data sets, based on

the resource availability on the machine environment.

http://www.jetir.org/

© 2019 JETIR February 2019, Volume 6, Issue 2 www.jetir.org (ISSN-2349-5162)

JETIRAB06064 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 371

REFERENCES

[1] V. Chvatal, ―A greedy heuristic for the set-covering problem, ‖Math. Oper. Res., vol. 4, no. 3, pp. 233–235, 1979.
[2] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules between sets of items in large databases”, in

Proc. SIGMOD, Washington, DC, USA, pp. 207–216, 1993.

[3] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation”, In Proceedings of ACM
SIGMOD’00, pp 1–12, May 2000.

[4] O. R. Zaïane, Mohammad E.l-Hajj, and Paul Lu. Fast Parallel Association Rule Mining without Candidacy

Generation. Proc. of the IEEE 2001 International Conference on Data Mining (ICDM'2001), San Jose, CA, USA,
November 29-December 2, 2001.

[5] M. T. Yang, R. Kasturi, and A. Sivasubramaniam., ―An AutomaticScheduler for Real-Time Vision Applications‖, In

Proceedings of the International Parallel and Distributed Processing Symposium(IPDPS), 2001.
[6] J. Wang, J. Han, Y. Lu, and P. Tzvetkov, ―TFP: An efficient algorithmfor mining top-k frequent closed itemsets,‖

IEEE Trans. Knowl. Data Eng., vol. 17, no. 5, pp. 652–664, May 2005.

[7] D. Xin, J. Han, X. Yan, and H. Cheng, ―Mining compressed frequen-pattern sets,‖ in Proc. 31st Int. Conf.VLDB,
Trondheim, Norway, pp. 709–720,2005.

[8] D. Xin, H. Cheng, X. Yan, and J. Han,―Extracting redundancy-aware top-k patterns,‖ in Proc. KDD,Philadelphia, PA,

USA,pp. 444–453,2006.
[9] G. Liu, H. Lu, and J. X. Yu, ―CFP-tree: A compact disk-based structure for storing and querying frequent itemsets‖,

Inf. Syst., vol. 32, no.2, pp. 295–319, 2007.

[10] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang. Pfp: parallel fp-growth for query
recommendation. In Proceedings of the 2008 ACM conference on Recommender systems, RecSys '08, pages
107{114, New York, NY, USA, 2008. ACM.

[11] Guimei Liu, Haojun Zhang, and Limsoon Wong, ―A Flexible Approach to Finding RepresentativePattern Sets‖,
IEEE Transactions on Knowledge and Data Engineering,Vol. 26, No. 7,pp 1562-1574,, July 2014.

[12] Arpan H. Shah and Pratik A. Patel, “Optimum Frequent Pattern Approach for Efficient Incremental Mining on Large

Databases using Map Reduce”, International Journal of Computer Applications (0975 – 8887) Volume 120 – No.4,
June 2015.

[13] R.Prabamanieswari, D.S.Mahendran, T.C. Raja Kumar, ―NCFP-tree: A Non Recursive Approach to CFPtree using

Single Conditional Database‖, International Journal for Research in Applied Science & Engineering Technology
(IJRASET), Volume 5 Issue XI November 2017.

[14] Swathika.K and Helen W.R, “An efficient parallel frequent itemset mining approach using Mapreduce framework”,

International Journal of Pure and Applied Mathematics, Volume 118 No. 20 2018, 477-486
[15] R.Prabamanieswari, D.S.Mahendran, T.C. Raja Kumar, “A Modified Algorithm for finding Representative Pattern

Sets”, International Journal of Engineering Research in Computer Science and Engineering(IJERCSE), Vol.5, Issue

3, March 2018, pp. 201-205.

http://www.jetir.org/

