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ABSTRACT 

 Recently, most of the applications will not need precise support information for 

frequent pattern. They approximate the frequency of every frequent pattern with a 

guaranteed maximal error bound. But, these algorithms generally have some 

problems and challenges while processing large-scale data. Therefore, the parallel 

approach has emerged as an important research topic. This paper implements the 

algorithm ModifiedRPset in a parallel manner while creating NCFP-tree. It follows the 

concepts such as considering closed patterns, finding C(X)s for closed patterns and 

applying greedy set cover algorithm which are same as  in the previous algorithms 

MinRPset and ModifiedRPset. The experiment results show that the proposed 

algorithm gives better execution time for finding a small number of representative 

patterns to best approximate all other frequent patterns comparing to the algorithm 

ModifiedRPset. 

Keywords: Frequent itemset, threaded NCFP-tree, greedy method, 

representative pattern sets. 

1.INTRODUCTION 

Efficient algorithms for mining frequent itemsets are crucial for mining association 

rules as well as for many other data mining tasks. Different methods introduced by 

different researchers generated the frequent itemsets by using the candidate 

generation [2] as well as without candidate generation [3]. Many algorithms and 

techniques based on tree [3] are posed for enumerating itemsets from transactional 

databases. Let the transactional database D= {t1, t2, . . . , tn}, where tj is a transaction 

containing a set of items, j[1,n]. Let I = I1,I2…..,Im be a set of m distinct attributes 

and t be transaction that contains a set of items such that T I. Each subset of I is 

called an itemset. If an itemset contains k items, then the itemset is called a k-

itemset. The support of itemset X in database D is defined as the percentage of 
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transactions in D containing X, that is, support tD (X) = {t | tD and X  t}/D. If the 

support of a pattern X is larger than a user specified threshold min-sup (min-sup (0, 

1]), then X is called a frequent pattern. Given a transaction database D and a 

minimum support threshold min-sup, the task of frequent pattern mining is to find all 

the frequent patterns in D with respect to min-sup. 

Nowadays, most of the applications will not need precise support information for 

frequent pattern. They approximate the frequency of every frequent pattern with a 

guaranteed maximal error bound. Recently, several approaches have been 

proposed to tackle the concise representation of frequent itemsets such as top-k 

frequent patterns [6], top-k redundancy-aware patterns [8], and error-tolerant 

patterns [5]. When considering the availability of massive volume of data, analyzing 

and decision making is still a major issue. To address this issue, it is necessary to 

study parallel implementations of data mining algorithms. In order to create parallel 

algorithms it is important to have an efficient way to tell the operating system to 

create either threads or processes. Many parallel problems are solved through the 

decomposition of data by creating threads to work on the data in parallel. In this 

paper, we propose a parallel formulation of the NCFP-Tree algorithm using multiple 

threads. 

The rest of the paper is organized as follows: Section 2 presents the related work. 

Section 3 describes the parallel construction of NCFP-tree and generation of 

representative pattern sets with example. The experimental   results are shown in 

section 4. Finally, section 5 concludes the paper. 

2. RELATED WORK 

In many applications, knowing the approximate support of frequent patterns is 

sufficient. Several approaches are proposed to make a trade-off between pattern set 

size and the precision of pattern support. Xin et al. [7] proposed two algorithms, 

RPglobal and RPlocal. The algorithm RPglobal is very time-consuming and space-

consuming. RPlocal is very efficient, but it produces more representative patterns 

than RPglobal. G.Liu et al [11] analysed the bottlenecks of RPglobal and RPlocal 

and developed two algorithms, MinRPset and FlexRPset, to solve the problem. The 

algorithm MinRPset is similar to RPglobal, but it utilizes several techniques to reduce 

running time and memory usage. In particular, MinRPset uses a tree structure called 

CFP-tree [9] to store frequent patterns compactly. The algorithm FlexRPset provides 

one extra parameter K, which allows users to make a trade-off between efficiency 

and the number of representative patterns selected. In [13], the algorithm NCFPGEN 

for creating a NCFP-tree is proposed.  The algorithm ModifiedRPset which is 

proposed in [15] uses NCFP-tree instead of CFP-tree and MinRPset to generate 

minimum representative pattern sets.  Although CFP-tree and NCFP-tree algorithms 
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are very efficient, they still take a lot of time to find minimum representative pattern 

sets. To reduce the execution time, it is necessary to study parallel implementation 

of such algorithms. 

There are many parallel association rule mining algorithms within the literature. 

Most such parallel algorithms are Apriori based. A parallel tree projection based 

algorithm, called MLFPT, based on FP-Tree algorithm is presented in [4] for a 

shared memory environment. In [10] a massively parallel FP-Growth algorithm is 

presented, the proposed algorithm allows to eliminate virtually communication 

among computers. The algorithm is expressed with the MapReduce framework. 

Arpan H. Shah et al., proposed Optimum pattern Tree [12] on incremental database 

with same threshold value. This algorithm is implemented on Hadoop to reduce the 

computation cost. Swathika.K and Helen W.R proposed a data partition [14] based 

Frequent Itemset Mining model over Hadoop that could be used to classify the type 

of tumour based on the prediction. In this paper, the proposed work creates parallel 

construction of sub trees of NCFP-tree [13] for each frequent 1-item in the header 

table. 

3. PARALLEL REPRESENTATIVE PATTERN SETS MINING  

Our proposed parallel representative Pattern Sets mining algorithm ParallelRPset 

consists of parallel construction of NCFP-tree using a thread concept and mining of 

the tree structure NCFP-tree for generating representative Pattern Sets. A detailed 

description of each major step is described in subsequent sections. 

3.1 Parallel NCFP-tree Construction 

The parallel pre-processing is performed in order to construct the final data structure 

that is going to be used for the mining. Given transactional database D and a 

minimum support threshold, finding of all frequent items and removing infrequent 

items in D are performed. Then, a conditional database Dand an extended 

conditional database Dare constructed. We use a header table to maintain the set 

of frequent items ui in a database. The frequent items are sorted into ascending 

frequency order in the header table. The mining is performed on D to mine all the 

itemsets starting with ui. Now, a thread concept is applied to process unique item ui 

in the header table. This is accomplished by letting each thread to create its own 

NCFP -tree, from its own node corresponds to header table. The process in NCFP-

tree [13] such as creating single node and multiple nodes is   done simultaneously by 

using multiple threads. The sub trees are constructed in parallel manner instead of 

processing each unique item ui separately for creating sub trees. Thus, the same 

NCFP-tree is created in parallel manner. 
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3.2 GENERATION OF REPRESENTATIVE PATTERN SETS 

Now, we use NCFP-tree to generate C(X)—the set of frequent patterns that X covers 

and   to find minimum number of representative pattern sets.  Here, we use 

ModifiedRPset [15] MinRpset [11] and the algorithm greedy [1] to generate the 

minimum number of representative pattern sets. 

Algorithm: ParallelRPset 

Input: 

 D is the database 

 min-supp is the minimum support threshold 

Output: 

 Minimum number of Representative Pattern Sets 

Description: 

1. Find frequent items, remove infrequent items and sort frequent items 

2. Create conditional database D and extended conditional database D 

3. Create a header for sorted frequent 1-itemsets (unique items ui ) 

4. For each unique item ui  header 

  Create NCFP-tree sub tree using thread 

5. Apply ModifiedRPset to find minimum number of Representative Pattern Sets 

EXAMPLE 

Consider the Transactional Database given in Table I. It has seven transactions, that 

is |D|=7. Assume minsup= 40%. The set of frequent itemsets are determined and are 

given in Table II. The construction of NCFP-tree in parallel manner is done by using 

six threads such as Thread 1, Thread 2..... and Thread 6. It is represented in 

programming aspect as: 

Thread 1  Thread 2  Thread 3 

c      d   p 

c-->|-|m|-|a     p-->|-|f 

      p-->-->m 

      p-->-->-->a 

      p-->|-|f-->m 

      p-->|-|f-->-->a 

      p-->|-|f-->m-->|-|a 

Thread 4  Thread 5  Thread 6 

f   m   a 

f-->m   m-->|-|a 

f-->-->|-|a 

f-->m-->|-|a 
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The following figure shows the parallel construction of NCFP-tree. 

 

 

 

 

 

 Fig. 3.1 Threaded NCFP-tree 

The Threaded NCFP-tree is same as NCFP-tree [13]. Here, we no need to merge all 

sub trees because all sub trees are constructed simultaneously. Table III shows the 

compact representation of frequent itemsets which are stored in NCFP-tree. 

Table I. Transaction Database                        Table II. Frequent Itemsets                         Table III. Compact Itemsets  

 

 

 

 

 

  

The procedures such as finding C(X)s and determining representative pattern sets 

are done either by using MinRPset [11] or by using ModifiedRPset [15]. Because 

ModifiedRPset follows the same procedures for finding C(X)s and applying Greedy 

method from MinRPset. The C(X) contains the subsets of X that can be-covered by 

X, for every X ∈ Fˆ where Fˆ denotes frequent patterns with support ≥ min_sup * 

(1− ) and F denotes frequent patterns with support ≥ min_sup. The C(X) is 

determined only for closed patterns. Therefore, for each itemset belongs to Table III 

is first checked whether it is closed or not then C(X) is determined. This example 

determines C(X)s only for the itemsets which are given in Table IV. 

      Table IV. Closed Frequent Itemsets 

 

 

 

 

 

Finally, the minimum representative pattern sets are discovered. In this example, the 

minimum representative pattern sets are { {pfma:3}, {cma:3}, {d:3}}. 

4. EXPERIMENTAL RESULTS 

The experiment is carried out on the computer with the configuration such as Intel(R) 

Core(TM) i3CPU, 3 GB RAM, 2.53 GHz Speed and Windows 7 Operating System. 

Three approaches such as MinRPset, ModifiedRPset and ParallelRPset are 

implemented in java. The experiment is evaluated on mushroom dataset. The 

mushroom dataset contains the characteristics of various species of mushrooms. It 

TID TRANSACTION 

1 a, c, e, f, m, p 

2 a, b, f, m, p 

3 a, b, d, f, g 

4 d, e, f, h, p 

5 a, c, d, m, v 

6 a, c, h, m, s 

7 a, f, m, p, u 

Frequent Itemsets(Compact Form)                                                                    Frequent Itemsets(Compact Form) 

 (min_sup = 40%) 

cma:3 

d:3 

pfma:3  pf:4 

fma:3    fa:4  f:5 

ma:5 

a:6 

Closed Patterns (min-sup=40%) 

f:5, a:6 

pf:4, fa:4,ma:5 

cma:3 

pfma:3 

Closed Patterns (min-sup=40%) 

f:5, a:6 

pf:4, fa:4,ma:5 

cma:3 

pfma:3 

c:3 

ma:3 

d:3

 

p:4 f:5 m:5 a:6 

f:4 m:3         a:4 a:5 

ma:3 a:3 
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has 119 items and 8124 transactions. The minimum, maximum and average length 

of its transaction is 23. It is obtained from the UCI repository of machine learning 

databases. 

4.1 EXECUTION TIME 

Here, the experiment considers execution time for finding the performance of the 

proposed algorithm ParallelRPset. The proposed algorithm is compared with 

MinRPset and ModifiedRPset. The algorithms are tested on the mushroom dataset. 

The figures Fig 4.1 and Fig 4.2 show the execution time of MinPRset,  

ModifiedRPset and Parllel-RPset algorithms. Fig 4.1 shows the execution time when 

considering sample data which is given in Table I. The min-supp is varied from 20% 

to 100% in increments of 20% and  = 0.25. We observed that there is a small 

difference between ModifiedRPset and MinRPset but, ParallelRPset has better 

performance comparing to both approaches. Fig.4.2 shows the execution time when 

considering mushroom dataset. Here,  is changed from 0.1 to 0.5 and min-supp is 

fixed as 0.4. The ParallelRPset gives better performance than MinRPset and 

Modified-RPset. 

             

     Fig 4.1. Execution Time when =0.25                Fig 4.2. Execution Time when min-supp=0.4 

5. CONCLUSION 

In this paper, we constructed threaded NCFP-tree and applied it in the 

ModifiedRPset instead of NCFP-tree to find minimum representative pattern sets. 

The proposed algorithm is implemented in java programming language. It gives 

better execution time comparing to both algorithms MinPRset and ModifiedRPset. In 

the future, we intend to improve this algorithm based on our findings and run our 

parallel algorithm for higher number of processors with larger data sets, based on 

the resource availability on the machine environment. 
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